A Blind-Test Comparison of the Reliability of Using External Morphology and Echolocation-Call Structure to Differentiate Between the Little Brown Bat (Myotis lucifugus) and Yuma Myotis (Myotis yumanensis)

Author(s): Tanya MJ Luszcz, Jason MK Rip, Krista J Patriquin, Lydia M Hollis, Joanna M Wilson, and Heather DM Clarke Jan Zinck Robert MR Barclay

Published By: Society for Northwestern Vertebrate Biology
DOI: http://dx.doi.org/10.1898/1051-1733-97.1.13

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
A BLIND-TEST COMPARISON OF THE RELIABILITY OF USING EXTERNAL MORPHOLOGY AND ECHolocation-CALL STRUCTURE TO DIFFERENTIATE BETWEEN THE LITTLE BROWN BAT (MYOTIS LUCIFUGUS) AND YUMA MYOTIS (MYOTIS YUMANENSIS)

TANYA MJ LUSZCZ, JASON MK RIP, KRISTA J PATRIQUIN, LYDIA M HOLLIS, JOANNA M WILSON, AND HEATHER DM CLARKE

Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4 Canada

ABSTRACT—Species that overlap in their morphologies are sometimes difficult to distinguish from one another, which can complicate species’ conservation and management. The Little Brown Bat (Myotis lucifugus) and Yuma Myotis (Myotis yumanensis) are sympatric in parts of their range in western North America, and they overlap in morphology, making them difficult to tell apart in the hand in some areas, such as the Pacific Northwest. We compared various methods of distinguishing between M. lucifugus and M. yumanensis to genetic results, using a blind test approach to remove observer bias. Using multiple independent observers, we used external morphology and echolocation-call structure to classify bats from a maternity colony consisting of both species. Genetic analysis confirmed 13 M. lucifugus and 40 M. yumanensis. Minimum echolocation-call frequency separated 100% of M. lucifugus from M. yumanensis using a cut-off of 43 kHz. All M. lucifugus had a minimum echolocation-call frequency ≤42.8 kHz, whereas M. yumanensis had a minimum frequency ≥44.55 kHz. There was some overlap in forearm length; a cut-off of 36 mm would have correctly identified 77% of M. lucifugus and 100% of M. yumanensis to species. Criteria based on subjective assessment of fur sheen and length as well as ear color were moderately successful (90.5 and 77% success by 2 separate observers) in distinguishing between the 2 species. The use of Munsell soil color charts and multivariate statistics to classify fur and membrane color and confirm species identification was not successful. Our results suggest that mean minimum call frequency alone is sufficient for distinguishing between M. lucifugus and M. yumanensis. Use of quantitative rather than qualitative criteria eliminates observer bias and appears to be better for identifying these 2 species.

Key words: bats, blind test, Chiroptera, echolocation, Little Brown Bat, Myotis lucifugus, Myotis yumanensis, species identification, Yuma Myotis

The inability to accurately identify species that overlap wholly or partially in morphology can have scientific, management, conservation, and even economic, implications (Arlettaz and others 1997; Davidson-Watts and Jones 2006; Bickford and others 2007; Sattler and others 2007; Boston and others 2010). There are multiple examples of morphological overlap across various mammalian taxa, including rodents (Russo and others 2006; Lalis and others 2009), tenrecs (Olson and others 2004), and bats (Pipistrellus pipistrellus and P. pygmaeus: Barlow and others 1997; Häussler and others 2000; Myotis myotis and M. blythii: Arlettaz 1999; Corynorhinus townsendii, C.
Myotis lucifugus
Brigham 1993; and
Myotis evotis
2005; rafinesquii
M. lucifugus
is more maneuverable than
M. yumanensis
their similarities in morphology,
Fenton 1983; Piaggio and others 2002). Despite
recent research does not support this (Herd and
and Davis 1969; Parkinson 1979), although more
some areas where their ranges overlap (Barbour
species were even once thought to hybridize in
Brigham 1993; Olson and others 2014). The 2
son 1979; Herd and Fenton 1983; Nagorsen and
in some areas (Barbour and Davis 1969; Parkin-
constrains morphology; therefore, bats of the
in parts of their range in western North America,
Yuma Myotis (M. yumanensis
sis
in the field, with varying success (Fenton and
Clutter, which has been adapted from
radar theory, refers to any obstacle (to a flying
2004). Clutter, which has been adapted from
species based on forearm length due to consid-
ernable interspecies overlap in these measure-
ments (Rodhouse and others 2008).
Differences in echolocation-call structure
have been used to distinguish between species
of bats with morphological overlap. For ex-
ample, the cryptic species Pipistrellus pipistrellus
(Common Pipistrelle) and Pipistrellus pygmaeus
(Soprano Pipistrelle) are almost impossible to
distinguish morphologically (Barlow and others
1997; Häussler and others 2000), but can be
reliably distinguished by a 10-kHz difference in
the mean frequency of maximum energy in
their echolocation calls (Jones and van Parijs
1993; Barlow and Jones 1997). Herd and Fenton
(1983) found significant differences in the search
phase echolocation calls of M. lucifugus
M. yumanensis, but did not think that they could
be reliably identified in this way due to overlap in
measurements. Within species such as M. lucifugus
that forage in a variety of habitats,
echolocation-call structure varies with the
amount of clutter (Broders and others 2004;
Wund 2006), which further complicates the use
of echolocation-call measurements to distin-
guish between species (Barclay and Brigham
2004). Clutter, which has been adapted from
radar theory, refers to any obstacle (to a flying
bat) that produces echoes that may interfere
with detection of echoes from a prey target, or
presents an obstacle to flight (Fenton 1990).
Despite the interspecific overlap, the minimum
frequency of echolocation-calls of M. lucifugus
ranges from about 35 to 43 kHz (Saunders and
Barclay 1992; O’Farrell 1999; Murray and others

The Little Brown Bat (Myotis lucifugus) and the
Yuma Myotis (Myotis yumanensis) are sympatric
in parts of their range in western North America,
and they overlap in size and morphology,
making them difficult to tell apart in the hand
in some areas (Barbour and Davis 1969; Parkin-
sion 1979; Herd and Fenton 1983; Nagorsen and
Brigham 1993; Olson and others 2014). The 2
species were even once thought to hybridize in
some areas where their ranges overlap (Barbour
and Davis 1969; Parkinson 1979), although more
recent research does not support this (Herd and
Fenton 1983; Piaggio and others 2002). Despite
their similarities in morphology, M. yumanensis
is more maneuverable than M. lucifugus
(Al-
dridge 1986). The 2 species also have different
foraging preferences and diet (Herd and Fenton
1983; Saunders and Barclay 1992; Nagorsen and
Brigham 1993), as well as different conservation
issues. Myotis lucifugus
was recently assessed as
Endangered in Canada due to the effects and
continued threat of white-nose syndrome on
populations (COSEWIC 2013), and subsequently
listed on Schedule 1 of the Species at Risk Act
(SC 2002) in December 2014 under the emergency
listing provisions of that Act. These differences in
ecology and conservation status make it espe-
cially important to be able to distinguish between
M. lucifugus
and M. yumanensis.

External morphology has been used to dis-
tinguish between M. lucifugus
and M. yumanen-
sis in the field, with varying success (Fenton and
Barclay 1980; van Zyll de Jong 1985; Nagorsen
and Brigham 1993; Rodhouse and others 2008).
Myotis lucifugus
is described as having long,
sleek, and glossy dorsal fur, dark basal fur on
the shoulders, dark brown to blackish ears, and
a forearm length usually >36 mm (Herd and
Fenton 1983; van Zyll de Jong 1985; Nagorsen
and Brigham 1993), although in the Okanagan
Valley, British Columbia, non-reproductive fe-
males had a dull pelage (Herd and Fenton
1983). Myotis yumanensis
is described as having short and
dull dorsal fur, no dark basal fur on the
shoulders, paler ears, and a forearm length
usually =36 mm (Nagorsen and Brigham 1993).
In 1 study, pelage sheen separated the 2 species
with 96% success, whereas ear color was 82%
successful (Rodhouse and others 2008). For
some other species, pelage color is the key
character used to distinguish between them in
the field (for example, Piaggio and Perkins
2005). However, pelage color can vary with
geography and reproductive status even within
a species (Herd and Fenton 1983; Warner and
Czaplewski 1984; Manning and Jones 1989;
Solick and Barclay 2006). Likewise, in a study
of 101 bats, only 18% of M. yumanensis
and 17% of M. lucifugus
were correctly identified to

14 NORTHWESTERN NATURALIST 97(1)
2001; Broders and others 2004; Wund 2006),
while that of *M. yumanensis* ranges from about
46 to 50 kHz (O’Farrell and others 1999),
suggesting that these ranges may be a reliable
measure to distinguish between species.
Differences in characteristic frequency, the end point
of the flattest (in terms of frequency) portion of
an echolocation call (Corben and O’Farrell
1999), have also been used to distinguish
between the 2 species (Weller and others
2007). In fact, characteristic frequency has been
suggested as a better measure than minimum
frequency because it is less likely to be affected
by decreasing amplitude (such as when the
distance between the bat and the microphone
increases as the bat flies away; Chris Corben,
pers. comm.; Szewczak 2000). Depending on the
type of ultrasonic detector used, there may be
broad overlap in minimum frequency and
characteristic frequency (Weller and others
2007).

Due to observed overlap in morphological and acoustic characteristics, none of the afore-
mentioned criteria are reported to provide 100% success in distinguishing *M. lucifugus* from *M. yumanensis* (Fenton and Barclay 1980; Nagorsen and Brigham 1993; Rodhouse and others 2008). Using a combination of characteristics has provided varying degrees of success (Herd and Fenton 1983; Weller and others 2007; Rodhouse and others 2008). For instance, Weller and others (2007) successfully identified 92% of *M. lucifugus* and 91% of *M. yumanensis* in the Pacific Northwest using a combination of fore-
arm length and characteristic frequency of echolocation calls. Likewise, others found that
a combination of forearm length and pelage sheen correctly identified 92% of *M. yumanensis* and 66% of *M. lucifugus* (Rodhouse and others 2008).

Classifying a species using qualitative character-
istics such as fur length or sheen is subjective because it depends on the experience
of the observer and environmental conditions
(such as lighting), and, if relied on exclusively,
could result in different identifications from 1
observer to the next (for example, Lobert and
others 2001). The ideal way to determine the
reliability of an identification technique is to use
blind testing with multiple observers (for
example, Scheuer 2002). Despite the difficulties in distinguishing between *M. lucifugus* and *M. yumanensis* in some areas of geographic overlap, there are no published studies that have compared external morphology, echolocation-call structure, and genetics in a blind test. The objective of our study was to determine the validity and reliability of using external mor-
phology, echolocation-call structure, or both to
distinguish between *M. lucifugus* and *M. yuma-
ensis* using a blind-test approach and genetic
confirmation of identity. A maternity colony of
both species roosting in the same building
provided the ideal opportunity for such a study.

METHODS

Our study site was a maternity colony for
both *M. lucifugus* and *M. yumanensis* in a main-
tenance building at the Hozomeen Ranger Station in North Cascades National Park, USA
(UTM: Zone 10, 2377506.85E, 6248600.55N, NAD83; elevation = 500 m) in the Skagit Valley
of the Cascade Range. Both species roosted in
the attic of this large building, although we do
not know if they were spatially separated from
each other. As a part of a larger study (Luszcz
2004), we conducted fieldwork for this project
over 2 d (17 and 18 May 2002). All capture and
handling of bats followed guidelines set by the
University of Calgary Animal Care Committee,
and the Canadian Council on Animal Care. At
dusk each night, we captured bats exiting the
building using mist nets erected along nearby
flyways. We held captured bats in cloth bags
until mist nets were closed and measuring
could begin.

Each bat was assigned a number, which was
used throughout the study to link all measure-
ments. Each observer was responsible for 1
identification task throughout the entire mea-
surement process, and tentative identifications
were not disclosed. Only 1 observer assessed
sex, age, mass, and forearm length because
these measures are less subject to observer
variation. Two observers independently as-
sessed fur and membrane (ear or wing) color
using Munsell® Soil Color Charts (Munsell
Color Laboratory 2000) as outlined in Solick
(2004). Munsell Soil Color Charts consist of
color chips organized by their hue, value, and
chroma, the 3 color attributes recognized by the
Munsell notation system (Miller 1958). Hue
describes a color’s relation to red, yellow, green,
blue, and purple, with higher hue numbers
being more yellow and less red. Value refers to the brightness of a color, and ranges from 0 (pure black) to 10 (pure white). Chroma denotes the degree of saturation, on a scale from 0 to 10. High chroma indicates a rich, vibrant color, whereas low chroma colors are pale (Munsell Color Laboratory 2000). Each observer classified fur and membrane color by placing the Munsell Soil Color Chart over the fur on the back below the scapula and on a membrane, using the same light fixed at a standard distance from the bat.

Two other observers, with similar bat identification experience, independently identified bats as M. lucifugus or M. yumanensis based on morphological criteria from the literature. Fur length was classified as either short or long, fur sheen as either dull or glossy, and ear color as either light to medium brown, or dark brown. A bat required a minimum of 2 out of 3 criteria (fur length, fur sheen, and ear color tone) to be classified to a species.

To assess whether wing loading or aspect ratio (2 measures of wing size and shape; Norberg and Rayner 1987) were useful in identification, 2 observers extended the right wing of each bat to its fullest and traced its outline onto paper. We later scanned the wing tracings and imported the digital images into BatWing.exe 1.0 software (Harley and Miller-Butterworth 2000). Using the software, we obtained measures of wing area and length and then calculated wing loading and aspect ratio following methods outlined in Solick and Barclay (2006). Wing loading and aspect ratio provide information about a bat’s ability to exploit cluttered habitats (Norberg and Rayner 1987).

Another observer took a 3-mm diameter wing biopsy punch from each bat for genetic analysis (Worthington and Barratt 1996), conducted at Portland State University (JZ). DNA was extracted from the biopsy samples using the Qiagen™ DNEasy Tissue Extraction Kit. A 190 base-pair mitochondrial DNA fragment from the 12S ribosomal subunit gene was amplified under standard PCR conditions (Zinck and others 2004). The resulting PCR product was sequenced using an ABI 3100 automatic sequencer. Sequences were aligned using Seqed (ABI), and analyzed in PAUP 4.0. Sequences were initially compared to a library of over 300 additional Myotis sequences. We used the genetic analysis to identify individuals to species and then used those identifications to compare to the identifications based on the characteristics measured in this study.

We released each bat in the same location along a laneway in a forested campsite less than 500 m from the roost, and we recorded echolocation calls using Anabat II ultrasonic detectors (Titley Electronics, Ballina, NSW, Australia) set to a division ratio of 16. Detectors were turned on only once the bats were free-flying, and we recorded calls until bats flew out of range. We used Analook software to purge call sequences of extraneous noise (pixels) and to measure call morphology. We adapted rules from Patriquin (2001) to clean echolocation calls. The final rules were: (a) pixels had to follow the same general trajectory of a call or they were deleted; (b) along a trajectory of points in a call, a lone pixel near the beginning or end of the call had to be separated from the rest of the call by no more than 5 kHz or it was deleted; and (c) along a trajectory of points in a call, groups of points near the beginning or end of the call had to be separated from the rest of the call by no more than 10 kHz or they were deleted. Minimum call-frequency values and characteristic-frequency values were each averaged to obtain 1 data point per bat. Number of usable calls recorded per bat ranged from 7 to 172, except in 1 case where only 1 usable call was recorded.

For all statistical analyses, we used the online statistical tool VassarStats (http://vassarstats.net/) and Microsoft Excel. We compared minimum echolocation call-frequency, characteristic call-frequency, mass, forearm length, wingspan, wing loading, and aspect ratio within and between the 2 species using 2 sample t-tests ($\alpha = 0.05$). Means and standard deviations are reported unless otherwise indicated. For the qualitative ear and wing variables, we examined agreement between observers, and between each observer and the genetic results, by calculating Cohen’s Kappa statistic, a measure of inter-observer agreement whereby agreement due to chance is factored out (Cohen 1960). Kappa values can help to assess the reliability of a method of categorization. Kappa values range from 1 to –1. A Kappa value of 1 indicates perfect agreement between
TABLE 1. Descriptive statistics for measurements of echolocation-call frequency and external morphology of *Myotis lucifugus* (MYLU) and *M. yumanensis* (MYYU) from the Skagit Valley, Washington, 2002. Mean ± standard deviation, range in parentheses, and sample size are provided.

<table>
<thead>
<tr>
<th></th>
<th>MYLU (all female)</th>
<th>MYLU males and females</th>
<th>MYYU females</th>
<th>MYYU males</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHOLOCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum frequency (kHz)</td>
<td>39.82 ± 1.84</td>
<td>47.48 ± 1.35</td>
<td>47.32 ± 1.31</td>
<td>47.87 ± 1.52</td>
</tr>
<tr>
<td>(36.32–42.80)</td>
<td>n = 12</td>
<td>n = 40</td>
<td>n = 31</td>
<td>n = 9</td>
</tr>
<tr>
<td>Characteristic frequency (kHz)</td>
<td>42.31 ± 3.08</td>
<td>51.86 ± 2.21</td>
<td>51.66 ± 1.95</td>
<td>52.60 ± 3.04</td>
</tr>
<tr>
<td>(38.99–50.42)</td>
<td>n = 12</td>
<td>n = 38</td>
<td>n = 30</td>
<td>n = 8</td>
</tr>
<tr>
<td>MORPHOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass (g)</td>
<td>5.51 ± 0.49</td>
<td>4.90 ± 0.36</td>
<td>5.03 ± 0.23</td>
<td>4.46 ± 0.38</td>
</tr>
<tr>
<td>(4.7–6.2)</td>
<td>n = 13</td>
<td>n = 40</td>
<td>n = 31</td>
<td>n = 9</td>
</tr>
<tr>
<td>Forearm length (mm)</td>
<td>36.47 ± 1.14</td>
<td>34.43 ± 0.70</td>
<td>34.50 ± 0.67</td>
<td>34.18 ± 0.78</td>
</tr>
<tr>
<td>(34.40–38.30)</td>
<td>n = 13</td>
<td>n = 40</td>
<td>n = 31</td>
<td>n = 9</td>
</tr>
<tr>
<td>Wingspan (cm)</td>
<td>23.10 ± 0.81</td>
<td>22.00 ± 1.03</td>
<td>22.16 ± 0.95</td>
<td>21.38 ± 1.14</td>
</tr>
<tr>
<td>(21.91–24.76)</td>
<td>n = 13</td>
<td>n = 39</td>
<td>n = 31</td>
<td>n = 8</td>
</tr>
<tr>
<td>Wing loading (N/m²)</td>
<td>6.04 ± 0.38</td>
<td>6.18 ± 0.55</td>
<td>6.19 ± 0.50</td>
<td>6.15 ± 0.76</td>
</tr>
<tr>
<td>(5.28–6.50)</td>
<td>n = 13</td>
<td>n = 39</td>
<td>n = 31</td>
<td>n = 8</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>5.98 ± 0.30</td>
<td>6.19 ± 0.36</td>
<td>6.15 ± 0.39</td>
<td>6.32 ± 0.19</td>
</tr>
<tr>
<td>(5.39–6.49)</td>
<td>n = 13</td>
<td>n = 39</td>
<td>n = 31</td>
<td>n = 8</td>
</tr>
</tbody>
</table>

Observers, 0 means that any agreement is totally due to chance, and −1 means there is perfect disagreement. Common criteria for Cohen’s Kappa are as follows: <0 = no agreement; 0 to 0.20 = poor agreement; 0.2 to 0.4 = fair agreement; 0.4 to 0.6 = moderate agreement; 0.6 to 0.8 = good agreement; and ≥0.8 = very good agreement (Landis and Koch 1977). We also used Cohen’s Kappa to examine inter-observer agreement of the Munsell Soil Color Chart variables (hue, value, and chroma).

RESULTS

Over 2 nights of mist netting, we captured 55 bats during their dusk exit, including 1 *Myotis evotis* (Long-eared Myotis) female. We obtained complete information, including usable echolocation calls, for 52 bats (43 females and 9 males); we did not obtain echolocation calls for 1 additional bat, but we included it in the morphological analyses. Genetic analysis confirmed 13 *M. lucifugus* (all females) and 40 *M. yumanensis* (of which 31 were females). Descriptive statistics for measurements of echolocation-call frequency and external morphology are summarized in Table 1.

There was no significant difference in mean minimum echolocation-call frequency between male and female *M. yumanensis*, or in mean characteristic frequency (Table 2); thus, we combined male and female *M. yumanensis* in the interspecies analysis of call parameters. Mean minimum call frequency was significantly different between *M. lucifugus* (39.82 ± 1.84 kHz) and *M. yumanensis* (47.48 ± 1.35 kHz; t = 15.77, df = 50, P < 0.0001; Table 2, Fig. 1). The highest minimum frequency for *M. lucifugus* was 42.8 kHz and the lowest minimum frequency for *M. yumanensis* was 44.5 kHz. Thus, in our study, a minimum frequency cut-off of 43 kHz separated 100% of *M. lucifugus* from *M. yumanensis*. Characteristic frequency also differed significantly between *M. lucifugus* and *M. yumanensis* (t = 11.85, df = 48, P < 0.0001; Table 2), although there appeared to be some overlap between species (ranges: MYLU = 38.99–50.42, MYYU = 45.85–57.26; Table 1). However, we considered the highest characteristic frequency for *M. lucifugus* (50.42 kHz) as an outlier. Thus, if we consider the second-highest characteristic frequency (45.55 kHz) for *M. lucifugus* as the correct highest characteristic frequency for the species in our study, and
TABLE 2. Results of t-tests to determine statistical differences in measurements of echolocation-call frequency and external morphology between *Myotis lucifugus* (MYLU) and *M. yumanensis* (MYYU) from the Skagit Valley, Washington, 2002. We report t-value with degrees of freedom, P-value, and estimate ± 95% confidence intervals. Significant P-values are indicated in bold. Asterisk (*) indicates when t-tests for samples with unequal variances were performed.

<table>
<thead>
<tr>
<th></th>
<th>MYLU versus MYYU</th>
<th>Females only</th>
<th>MYLU versus MYYU</th>
<th>MYYU females versus males</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHOLOCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum frequency (kHz)</td>
<td>t<sub>38</sub> = 15.77</td>
<td>t<sub>41</sub> = 15.11</td>
<td>t<sub>36</sub> = 0.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P < 0.0001</td>
<td>P < 0.0001</td>
<td>P = 0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.66 ± 0.98</td>
<td>7.54 ± 1.01</td>
<td>0.50 ± 1.04</td>
<td></td>
</tr>
<tr>
<td>Characteristic frequency (kHz)</td>
<td>t<sub>14.65</sub> = 9.77</td>
<td>t<sub>14.65</sub> = 9.77</td>
<td>t<sub>36</sub> = 1.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P < 0.0001</td>
<td>P < 0.0001</td>
<td>P = 0.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.55 ± 1.62</td>
<td>9.36 ± 2.04</td>
<td>0.94 ± 1.78</td>
<td></td>
</tr>
<tr>
<td>MORPHOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass (g)</td>
<td>t<sub>51</sub> = 4.83</td>
<td>t<sub>14.17</sub> = 3.35</td>
<td>t<sub>9.7</sub> = 4.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P < 0.0001</td>
<td>P = 0.005</td>
<td>P = 0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.61 ± 0.25</td>
<td>0.48 ± 0.31</td>
<td>0.57 ± 0.30</td>
<td></td>
</tr>
<tr>
<td>Forearm length (mm)</td>
<td>t<sub>15.03</sub> = 6.06</td>
<td>t<sub>15.6</sub> = 5.78</td>
<td>t<sub>36</sub> = 1.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P < 0.0001</td>
<td>P < 0.0001</td>
<td>P = 0.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.04 ± 0.72</td>
<td>1.96 ± 0.72</td>
<td>0.32 ± 0.53</td>
<td></td>
</tr>
<tr>
<td>Wingspan (cm)</td>
<td>t<sub>38</sub> = 3.50</td>
<td>t<sub>42</sub> = 3.11</td>
<td>t<sub>37</sub> = 1.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P = 0.001</td>
<td>P = 0.003</td>
<td>P = 0.054</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.10 ± 0.63</td>
<td>0.94 ± 0.61</td>
<td>0.78 ± 0.80</td>
<td></td>
</tr>
<tr>
<td>Wing loading (N/m²)</td>
<td>t<sub>50</sub> = 0.86</td>
<td>t<sub>42</sub> = 0.97</td>
<td>t<sub>37</sub> = 0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P = 0.39</td>
<td>P = 0.34</td>
<td>P = 0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.14 ± 0.33</td>
<td>0.15 ± 0.31</td>
<td>0.04 ± 0.45</td>
<td></td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>t<sub>50</sub> = 1.86</td>
<td>t<sub>42</sub> = 1.43</td>
<td>t<sub>24.33</sub> = 1.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P = 0.07</td>
<td>P = 0.16</td>
<td>P = 0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.21 ± 0.22</td>
<td>0.17 ± 0.25</td>
<td>0.17 ± 0.20</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1. Frequency distribution of the minimum echolocation-call frequency of 12 adult *Myotis lucifugus* and 40 *Myotis yumanensis* from the Skagit Valley, Washington.
compare that to the lowest characteristic frequency for *M. yumanensis* (45.85 kHz), then the characteristic frequencies for the 2 species do not overlap.

Forearm lengths and wingspans did not differ significantly between male and female *M. yumanensis*, nor did wing loading or aspect ratio (Table 2). Although female *M. yumanensis* had a slightly greater wingspan than males (Table 1), this difference was not significant (Table 2). Female *M. yumanensis*, however, were significantly heavier than males (*t* = 4.3, *df* = 9.7, *P* = 0.002; Table 2). Therefore, given that all measurements of external morphology (except mass) for *M. yumanensis* were relatively similar, we combined males and females of this species when we compared *M. lucifugus* and *M. yumanensis*. *Myotis lucifugus* were significantly heavier, had longer forearms, and greater wingspans than *M. yumanensis* (Table 2, Fig. 2). Ten of the 13 *M. lucifugus* had a forearm length >36 mm, and all *M. yumanensis* (*n* = 40) had a forearm length ≤36 mm. Therefore, 77% of *M. lucifugus* and 100% of *M. yumanensis* in our study could have been correctly identified to species on the basis of forearm length alone if a cut off of 36 mm was used. Despite the differences in wingspan, the 2 species did not differ in their wing loading or aspect ratio (Table 2). When we compared females only, the results were the same. Female *M. yumanensis* weighed significantly less and had shorter forearms and smaller wingspans than female *M. lucifugus* (Table 2). They did not, however, differ in their wing loading or aspect ratio (Table 2).

Compared to the 100% success in identifying individuals to species using echolocation-call characteristics, criteria based on subjective assessment of fur sheen and length, and ear color were less successful in distinguishing between *M. lucifugus* and *M. yumanensis*. Observer 1 correctly identified 48 of 53 bats (90.5% success) to species (Cohen’s Kappa statistic κ = 0.76; good agreement), and Observer 2 correctly identified 41 of 53 bats (77% success) to species (κ = 0.49; moderate agreement). There was moderate inter-observer agreement in the species identifications made by each of the 2 observers (κ = 0.56). In the cases of misidentification: Observer 1 misidentified *M. yumanensis* as *M. lucifugus* in 4 cases, and *M. lucifugus* as *M. yumanensis* in 1 case; Observer 2 misidentified *M. yumanensis* as *M. lucifugus* in 10 cases, and *M. lucifugus* as *M. yumanensis* in 2 cases. In 8 of 14 cases of the misidentification of *M. yumanensis* as...
DISCUSSION

Our blind test approach using multiple observers to compare methods for distinguishing between *M. lucifugus* and *M. yumanensis* provided valuable insight into the reliability of each method as a species identification tool. In our study, minimum echolocation-call frequency was the best variable for species confirmation. Based on the genetic results, the separation of minimum frequency at 43 kHz was distinct, with no overlap between species. In another study that examined the same parameter between *M. lucifugus* and *M. yumanensis*, there was no overlap in mean lowest frequency from Anabat data sets (and little overlap for Anabat single calls recorded from Anabat zero-crossing detectors; Figure 3 in Weller and others 2007), lending support to our methods and results. Weller and others (2007) did, however, observe broad overlap in lowest frequency between the 2 species in data recorded using time-expansion detectors and analyzed using SonoBat call analysis software. These differences in results may relate to differences in the 2 detection systems (Fenton 2000).

Minimum frequency is less consistent than characteristic frequency, because if there is a significant droop, or tail, after the characteristic frequency point, the extent to which this is detected becomes highly dependent on the distance to the bat. This is 1 reason why characteristic frequency is considered a better measure for acoustically distinguishing between species. As a bat flies further away, less of the tail will be recorded as its amplitude decreases as the frequency drops (Chris Corben, pers. comm.). On the other hand, as clutter increases, a bat’s echolocation call becomes steeper. The characteristic frequency increases and requires more magnification to see changes in the slope in order to define it (Broders and others 2004; Wund 2006), compared to minimum frequency. Using our rules for cleaning Anabat calls, we did not find minimum frequency to be misleading. However, we did find what appeared to be overlap in characteristic frequency between the 2 species, although it was due to what we consider to be an outlier frequency for 1 *M. lucifugus*.

More recently, field researchers in California and British Columbia have successfully distinguished between captured *M. lucifugus* and *M. yumanensis* in the field using a “bag test” (Dave Johnston, HT Harvey and Associates, Los Gatos, CA, pers. comm.; Cori Lausen, Birchdale Ecological Ltd., Kaslo, BC, pers. comm.). They recorded echolocation calls of bats while they were still in their cloth holding bags, differentiating the 2 species by their minimum frequency. In British Columbia, they used an Echo Meter EM3 detector (Wildlife Acoustics, Massachusetts, USA), and observed emitted pulses in the field: minimum frequencies of 30 to 37 kHz for *M. lucifugus* and >42 kHz for *M. yumanensis* (Cori Lausen, pers. comm.). Their minimum frequency cut-off was similar to that observed in our study. This “bag test” was 100% accurate when compared to genetic results (n = 13; Cori Lausen, pers. comm.). A bat echolocating in a bag is responding to a high clutter environment. Broders and others (2004) similarly found that rates of misclassification were lowest in high clutter. Determining minimum echolocation-call frequency in situ would make identification of *M. lucifugus* and *M. yumanensis* much easier than...
our methods that measure the mean minimum frequency of all calls in a sequence after manual call cleaning, or even methods that apply custom filters in Analook or auto-identification software (Corben and O’Farrell 1999; Weller and others 2007). Application of the “bag test” in other geographic areas would be an ideal confirmation of its strength in distinguishing between *M. lucifugus* and *M. yumanensis* in the hand. Furthermore, comparing “bag test” minimum frequency to that of calls collected from a free-flying bat after it has been released would be an excellent test of the strength of both methods.

Measurements of external morphology resulted in variable and sometimes inconclusive species identifications. Although body mass and wingspan significantly differed between *M. lucifugus* and *M. yumanensis*, the interspecific overlap in these measurements reaffirmed that they alone are not adequate for species identification. Measurements of wing loading and aspect ratio were too similar to be of any value in separating the 2 species. Contrary to Rodhouse and others (2008), we found little overlap between species in measurements of forearm length; however, our sample size was relatively small and only from 1 geographic location. As has been found in other *Myotis* species, female *M. yumanensis* were significantly heavier than males (for example see Kalcounis and Brigham 1993). Had we captured male *M. lucifugus* in our study, we might have observed even more overlap in body mass and forearm length. The 3 *M. lucifugus* that overlapped with *M. yumanensis* in mass and forearm length (Fig. 2) were identified to species correctly by their fur length and sheen, and ear color, as well as minimum echolocation call frequency. It should also be noted that bats misidentified by their fur length and sheen, and ear color would have been correctly identified by their forearm length and by their minimum echolocation-call frequency, although we did not have an echolocation call recording for 1 individual.

Distinguishing between *M. lucifugus* and *M. yumanensis* based on fur characteristics and ear color (van Zyll de Jong 1985; Nagorsen and Brigham 1993) was only moderately successful and is quite subjective. Both observers had a similar amount of bat identification experience, yet showed only moderate agreement in their species identification. In our study, only 2 *M. lucifugus* were misidentified as *M. yumanensis* (due to short dull fur), whereas 8 misidentifications in the opposite direction occurred (due to long glossy fur and dark ears). The Skagit Valley, where this study occurred, is a coastal-interior transition zone in the Cascade Range. Thus, some of the *M. yumanensis* in our study may have been the coastal subspecies, *M. yumanensis saturatus* Miller 1897, which is a dark-brown to chestnut form with black ears and membranes (van Zyll de Jong 1985). Species identification using these characteristics could have been further complicated if we had conducted this study later in the season when juveniles were flying, because *M. lucifugus* juveniles have been reported to have darker fur than adults (Fenton and Barclay 1980), whereas yearlings tend to have duller fur than adults (Herd and Fenton 1983). Our attempts to use Munsell Soil Color Charts to distinguish differences in fur and membrane color between *M. lucifugus* and *M. yumanensis* were unsuccessful because the results were irreproducible, as evidenced by poor inter-observer agreement (Cohen 1960), suggesting that this method is likely not worthy of further testing.

In conclusion, our results demonstrate that mean minimum frequency can be a strong predictor of species on its own when distinguishing between *M. lucifugus* and *M. yumanensis*. However, due to variation in echolocation in different geographic locations and habitats across the range of these 2 sympatric species (for example, Weller and others 2007), a 43 kHz minimum frequency cut-off may not be applicable in all areas. Furthermore, we caution that this method should not be applied to free-flying bats across various habitat types, but should be limited to identification of captured bats released into the same conditions (for example, capture site). Further study in different geographic areas and habitats could determine whether our methods and specific cut-off value are generally applicable.

Acknowledgements

Funding for this work came from the Skagit Environmental Endowment Commission and the Natural Sciences and Engineering Research Council of Canada. Permission to study the colony was granted by the US National Park Service and Seattle City Light. We thank R Moody for volunteering his time on the field project. P Ormsbee provided advice on study design. Thanks also to D Solick for assistance with Munsell Soil Charts, L Ainsworth and R Joy for statistical assistance,
C Corben for providing feedback on portions of the manuscript, and C Lausen and D Johnston for providing feedback on portions of the manuscript and for sharing unpublished data and information.

LITERATURE CITED

Submitted 14 February 2015, accepted 19 August 2015. Corresponding Editor: Robert Hoffman.